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J.  Phys. A :  Math. Gen. 16 (1983) 1855-1867. Printed in Great Britain 

The SO(3) c SU(3) problem from a holomorphic induction 
point of view 

W H Klinktt 
Institut fur Theoretische Physik, Universitat Tubingen, D-7400 Tubingen, West Germany 

Received 4 November 1982 

Abstract. A map carrying irreducible representations of SO(3) into an irreducible rep- 
resentation space of SUt3) is given. This map is used to construct orthogonal polynomials 
of SU(3) in an SO(3) basis. Two procedures are discussed for dealing with multiplicity, 
one canonical, the other not. It is shown how to construct matrix elements of SUI31 
representations in an SO(3) basis. 

1. Introduction 

Writing the irreduciblc representations of SU(3) in an SO(3) basis has been a problem 
of long-standing interest in nuclear physics (Elliott 1958, Harvey 1968; see e.g. Hecht 
and Zahn 1979 for recent calculations on cluster models); and once it is known how 
to construct such a basis, it is then possible to compute matrix elements and Wigner 
coefficients in an SO(3) basis. Of particular mathematical interest is the fact that the 
SO(3) basis is not multiplicity free. That is, in a given SU(3) irreducible representation, 
a representation of SO(3) may occur more than once. 

This means that operators arising outside SO(3) are necessary to label bases of 
irreducible representations of SU(3) properly. The state labelling problem has conven- 
tionally been dealt with by introducing an operator R which commutes with the Lie 
algebra elements of SO(3) and the Casimir operators of SU(3) (Moshinsky et a1 1975, 
Judd eta1 1974 (where other ways of labelling SO(3) states in SU(3) are also discussed)). 
Then a state of SU(3) can be written as I(m)lkw), where ( m )  labels an irreducible 
representation of SU(3), I ,  k are eigenvalues of the orbital angular momentum and 
projection, respectively, and w is the eigenvalue of the operator R. Other methods 
for dealing with the multiplicity problem are given in Moshinsky et a1 (1975) and 
Judd er a1 (1974). 

In this paper we will obtain basis states and compute matrix elements of SU(3) in 
an SO(3) basis using the methods of holomorphic induction (Klink and Ton-That 
1979a and references therein). This will mean that basis elements of SU(3) are realised 
as polynomials over GL(3, e);  and in contrast to the operator R, multiplicity will be 
dealt with using representations of a permutation group (canonical procedure) and 
with coupled angular momentum (non-canonical procedure). 

f On leave from the Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, 
USA. 
$ Supported in part by the Deutsche Forschungsgemeinschaft. 
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To get a feeling for polynomial representations several elementary examples are 
discussed here which will be of importance later on. The two fundamental (three- 
dimensional) representations of SU(3), (100) and (110) (better known as the 3 and 
3* representations) each contain the three-dimensional 1 = 1 representation of SO(3) 
once. Thus, for these two representations one can write SU(3) states as I ( lO'O)l=  1, k )  
and I(l lO)l= 1, k), where k =0,  *la It is well known that the (100) and (110) 
representations of SU(3) can be realised as minors of determinants of GL(3, C) (Klink 
and Ton-That 1979b). To connect the resulting basis independent polynomial states 
with Dirac states I ), it is necessary to embed SO(3) in SU(3) in a definite way. One 
conventionally uses a spherical basis, which is equivalent to defining SO(3) as that 
subgroup of SU(3) leaving the form 

Thus the states of the two three-dimensional representations of SU(3) in an SO(3) 
basis can be concretely realised as GL(3, C) polynomials. 

Once the states are known it is straightforward to compute matrix elements; for 
as will be shown in § 2, representations of polynomial states are given by right 
translation: (T,,A)(g)=A(ggO), where A(g) is any of the six minors of (1) and go€  
GL(3, C). From the fact that the minors satisfy the relation Aj(ggo) = & AL(g)Ar(go) 
and Aj$.',(ggo) = x k l < k 2  A~li;,(g)A~;>(go), it follows that the matrix elements are given 
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by Aj (go)  for (100) and A j : h ( g o )  for (110); for example 

((100)1, -l~Tgl(lOO)l, l)=Di'P,O:(g)=h:(g)=gzl, 

((110)1, 1ITgI(110)1, - ~ ) = D ? I Y  ( g )  = A E ( g )  =g i2g33-gng32 .  
( 2 )  

If the elements gEGL(3,C) are restricted to elements of SU(3), then the matrix 
elements become unitary matrices. 

The goal of this paper will be to show how these results can be generalised to 
arbitrary representations of SU(3). In 0 2 arbitrary irreducible representations will 
be built out of sums of tensor products of the (100) and (1 10) representations discussed 
above, with the sums built around certain Wigner coefficients of SO(3). Then in 0 3 
matrix elements of SU(3) in an SO(3) basis will be computed. 

2. SU(3) representations in an SO(3) basis 

The goal of this section is to realise the states l (m) lkv)  as polynomials over GL(3, C); 
7) is a multiplicity parameter that is to be determined. 

We begin by first giving a basis independent definition of polynomial representa- 
tions of SU(3). Let ( m )  = (ml  5 m2 2 0) ,  mi, m2 integers, be a representation of 
GL(3, C); then 

(3) 

defines an irreducible polynomial vector space for the representation ( m )  of GL(3, C). 
Here b is an element of the Bore1 subgroup 

V(m)  = {f: GL(3, C )  + C, f polynomial, f ( b g )  = 7 r ( m ) ( b ) f ( g ) }  

whose representation is given by n'"'(b) = b;;'b2. The GL(3, C) representation is 

( T g o f ) ( g )  = f ( g g o ) ,  f~ V'm', g o €  GL(3, C). (4) 

where the bar denotes complex conjugation. If go in (4) is restricted to the SU(3) 
subgroup of GL(3, C), then Tgo remains irreducible in  V(m) and becomes unitary with 
respect to the inner product ( 5 ) .  

We now want to connect the polynomial space V(m) with the fundamental rep- 
resentations discussed in the introduction. To that end consider the ml-fold tensor 
product space 

0, , . 0 V"'O', (6 )  T m , m z  ~ ~ ( 1 0 0 )  

where the first m l  - m2 representations are fundamental representations of the form 
(100) and the remaining m2 representations are fundamental representations of the 
form (1 10). Define the map @ : TmImz + V(m) by 

(7) ( @ F ) k )  = F ( g ,  g ,  * ' ' , g ) ,  F E  Tmlm2. 
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Then CDT"'l"'z = V'"';  this can easily be seen by noting that 

(@F)(bg)  =F(bg,  bg, . * 9 ,  bg) = niloo) ( b )  . * * n"'O'(b)(@F)(g) = P ( b ) ( C D F ) ( g ) ,  

so @F is a polynomial that transforms to the left correctly, and hence is in V(m'.  For 
example, if ( m )  = (310), the 15-dimensional representation of SU(3), we have 
(uniquely) the three-fold tensor product (100) O (100) O (110). Thus, all representa- 
tions ( m )  of SU(3) can be obtained from the tensor product space TmImZ of fundamental 
representations (100) and (110), using the map 0. 

from the irreducible representation 
space W' of SO(3) to T"1m2. If such a map can be found, then ( @ A ~ l m Z f ) ( g ) ,  f~ W',  
will give a polynomial realisation of SU(3) in an SO(3) basis. 

To construct such a map, consider another map from W'  to the ml-fold tensor 
product space of 1 = 1 representations of S0(3) ,  : W '  + W' 0 . . . 0 W'.  As shown 
in the appendix and in Klink (1983), the map is given by 

The goal now is to construct a map 

2ikk = ( l k l , .  . . , lk,,llkq)ei, 0.. . @e:,,, (8) 
k = k , + .  + k m l  

where e: is an orthonormal basis element in W'. (I) are SO(3) Wigner coefficients 
giving the overlap between ml 1 = 1 representations with components kl, . . . , k,, and 
I ,  k, q, where 9 as before is a multiplicity index. That is, ( I )  is an orthogonal matrix 
in kl, . . . , k,, and lkq. Since (I) is orthogonal and e k ,  0 . . -0 e i,, forms an orthonor- 
mal basis in the ml-fold tensor product space Ate: is also orthonormal. 

Assuming now that ( I )  is known (as discussed in the appendix), a A map can be 
defined from W' to T"'"'. The idea is simple; since V'loo' and V""' each contain 
only the 1 = 1 representation of S0(3),  the first m l  - m2 basis elements e;< of (8) can 
be replaced by e:'') basis elements of SU(3), and the remaining m2 elements replaced 
by eh;"'. Then 

A ~ l m z e ~  = ( lk l ,  . . . , lk,,/lkq)ehl~o' 0.. . Oekfp' (9) 
k = k l +  ...+ k , ,  

carries the basis element e: of SO(3) to T"'l"z of SU(3). 

coefficients give 
If A:l"ze: is rotated by an element R E S0(3) ,  the properties of the Wigner 

TRATlm2e: = ( I)(eL':o' 0. . . O e ~ ~ ~ ' ) ( g l R ,  . . . , gmlR) 
k t  ... k ,  

(10) 

so that for fixed multiplicity q, A?lm2eL transforms irreducibly with respect to SO(3). 
The multiplicity index q comes from the ml-fold tensor product W' 0. . . 0 W'. 

That is, in such a tensor product space a given irreducible representation I of SO(3) 
may appear more than once; q labels the different ways in which a given 1 gets mapped 
into T"'"''. As shown in the appendix, q comes from representations of the group 
S , , ,  the permutation group on m l  letters. 

= o:,k(R)ii,"l"Ze;, 
k '  
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But only certain representations of S, ,  are allowed. This can be seen by composing 
@ and AT1m2 so that W’ is mapped into Vtml:  

(@ATlm2e;)(g) = 1 (\)(@eL’:’’ 0. . . 0 e(kl_lp))(g), 

h‘L)(g)= 1 (I)e;’?’(g). . . ek,, (g), 
(11) 

k i +  ...+ k m l = k  

(1101 

rl k , +... + k ,  

1 where @AY1m2 acting on e k  E W‘ generates orthogonal (but in general not normalised) 
basis elements h([’(g) in V‘”. That h([)(g) is orthogonal in lk follows from the fact 

that TR of (10) intertwines with @. 
From (11) it is clear that eCF’(g) . . . e(kl_o:!m2(g) is symmetric under the interchange 

of the m l - m z  labels k,, while similarly the remaining m2 labels ki leave the (110) 
polynomials unchanged. Therefore, only for those representations of S,, that contain 
the identity (symmetric) representation of Sml-,, x S,, will the composition map 
@AT1m2 be non-zero. Thus, refers to those irreducible representations of S , ,  that 
contain the identity representations of S, ,  -,, x S,,. Such a result is similar to that 
obtained in Klink (1983) for the map sending an irreducible representation of SU(2) 
into an n-fold tensor product of SU(2) representations. 

The simplest class of orthogonal SO(3) polynomials comes from those representa- 
tions of SU(3) for which there is no multiplicity. For SU(3) representations of the 
form (m, 0,O) or (m,  m, 0), the SO(3) content is given by 1 = m, m -2, m -4 . . . . From 
equation (1 1) we get 

r) r) 

where the SO(3) Wigner coefficients (given in equation (A5)) are symmetric under 
any interchange of k l  . . . k ,  (they transform as the identity representation of S , ) .  
For the representation (”0) it is merely necessary to replace the (100) representa- 
tions by (110) representations in equation (12). 

For example, ( m )  = (200) contains 1 = 2,O and the Wigner coefficients of interest 
are (lkllk211k) with ( I )  symmetric under the interchange of k l  and k 2 .  This gives 

h$?” = [A::(g)I2, h(200) 2 
2,2 =g11, 

h E O ’  = g11g12, 
h (200) 2 

hz,-i = gi3gi2, 

h $??’) = A % M ~ ~ ( g ) ,  

h$?? = A:%g)A%g), 

h(220) = A12 
2.0 lz(g)A::(g) + [A::(g)I2, 2.0 = gllgl3 + g12, 

(13) (200) 

(200)  - 2 h $:!;’ = [A::(g)]’, h 2 , - 2  -g13, 

h Eo) = 2g11g13 - g:2, hbTiO’ = 2AE(g)AZ(g) -[A::(g)12, 

where Aiz(g) are the minors given in (1). The orthogonality of these basis elements 
is easily checked using the differentiation inner product, (5); similarly the factors 
which normalise the polynomials (13) are obtained using (5). 

Using (12), it is possible to construct orthogonal polynomials h(L’(g) for any 

representation ( m )  of SU(3). One simply obtains a representation ( m )  = (ml ,  m2, 0 )  
from the tensor product ( m l  - m2, 0,O) 0 (m2, m 2 ,  0 )  via a map @ from 

rl 
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defined by vi m l - m 2 , 0 , 0 )  0 V ( m , , m , , O )  to v ( m , , m , . O )  

F~ V ( m l - m 2 . 0 , 0 )  0 V ( m 2 . m 2 . 0 )  =m g), 

That @FE V(m1*m2so’ requires showing that OF satisfies the definition of V‘”) given 
in (3); the proof follows that given in equation (7). 

resentation I of SO(3). But by coupling f l  to l 2  we get 
However, (ae :31-”’230~0) 0 e12k: i m  m 2 + 0 )  )(g) does not transform as an irreducible rep- 

h(;nk’ (g) = 1 ( I l k l 1 2 k ~ ~ l k ) @ ( e ~ ~ 1 , ~ m 2 ’ o ’ o ~  0 ej,”k2;m,,0) Ng), (14) 
( r l , r 2 )  k i k 2  

where ( l l k 1 1 2 k 2 ~ l k )  is an SO(3) Wigner coefficient; notice that ej21-m290s0) and 
(200) - 

g13 becomes e$2!!2’ = ( l / f i ) g & .  
It may perhaps seem strange that 77 in (11) refers to representations of S,, while 

the multiplicity in (14) is given by (I l ,  1 2 ) .  For representations (m) for which the 
multiplicity of a given representation 1 of SO(3) is one, the two polynomials agree up 
to a normalisation factor. However, (14) is computationally much simpler because 
only relatively simple Wigner coefficients are required. In contrast, the SO(3) Wigner 
coefficients needed in (11) are more difficult to compute, because ( . their required 
transformation properties under Sm1. When a given representation 1 occurs more than 
once in (m), the polynomials (11) and (14) do not agree. While the labels (11, 1 2 )  in 
(14) are sufficient to resolve the multiplicity, the polynomials (for a fixed 1, k )  are 
linearly independent, but not orthogonal. In contrast the polynomials of (11) are 
orthogonal in 77 because the Wigner coefficients transform irreducibly with respect to 
S,,. We call the labelling in (11) canonical and in (14) non-canonical. Thus, the 
canonical polynomials of (11) are orthogonal in 1, k ,  q but more difficult to obtain 
than the non-canonical polynomials (14). 

As an example of these considerations, we study the representation (420) which 
contains I = 4 ,3 ,2 ,2 ,  0; note that I = 2 has multiplicity 2. Then m l  = m2 = 2, so that 
the olynomials e!:::’ and e!:::’ are needed to compute the non-canonical polynomials 
hj:”)(g). For simplicity nnly polynomials with k = 0 will be given. The Wigner 

coefficients needed in (14) are: 

e p ; m 2 * o )  must be the properly normalised polynomials. For example, in (13), h 2,-2 - 

( r 1 r 2 1  

( k i  k 2 )  
k = O  2 -2 -2 2 1 -1 -1 1 0 0  N 

( = 4  1 1 4 4 6 i/@ 
3 1  -1 2 -2 0 1 / 4 3  

1 2  -2 -1 1 0 1/4@ 
2 2  2 1 1 -2 11414 

0 1  1 -1 -1 1 i / Js  

where N is a factor needed to normalise the Wigner coefficients. Then, for example, 
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(420) - (420) 

10,O) 
It is also possible to reach I ,  k = 0,O by 11 = 12 = 0. Then h o,o - eo.0 (g)eb?io'(g) 

and when the polynomials (13) are used, the result agrees with (15). 
That h'yt '  agrees with h'4ofoo) comes about because there is only one way that 1 = 0 

can sit in (420). But when there is multiplicity things become more complicated. For 
the I = 2 representations in (420) there are three ways to couple l1 to l2 to obtain 
1 = 2, namely 2 0 2, 0 0 2 and 2 0 0. Each of these possibilities will result in poly- 
nomials, namely h'if:), h':::), and h':2:', but only two are linearly independent, and 

none are orthogonal to each other, although they are of course orthogonal to poly- 
nomials with different I values. Orthogonal polynomials may be generated by using 
a Gram-Schmidt process, but there is no unique way of choosing the (1112) labels. 

To resolve the multiplicity canonically, Wigner coefficients of the form 
( l k l l k 2 1 k 3 1 k 4 ) l k 7 )  are needed, where 7 refers to representations of S4 and to basis 
labels in these representations which contain the identity representation of S 2  x S 2 .  

These Wigner coefficients are more difficult to obtain than those needed for the 
non-canonical bases, but they do generate polynomials that are orthogonal in 7. 

I0,O) 122)  

12.2) 10,21 (2.01 

3. Matrix elements of SU(3) in an SO(3) basis 

The polynomials hip' are orthogonal, but not normalised. The normalised polynomials 

will be designated by ei?d(g), so that 
II 

where the norm )I 1 1  is given in ( 5 ) .  As stated in # 2 the action of go€ SU(3) on the 
orthonormal polynomial (16) is given by 

The matrix elements in an SO(3) basis are then 

Although (17) is the usual definition of a matrix element, it does not provide the most 
convenient means by which to compute the matrix element. 

To find a convenient way of computing the matrix element (17), we return to the 
tensor product space T"'"' (equation (6)) and note (using Dirac notation) that 



1862 W H Klink 

where ( 1 )  is a Wigner coefficient for coupling (100) 0. . . 0 (110) to obtain ( m ) .  Right 
translating by g o  and taking the inner product gives 

D ; t ! , , , r k q ( g o )  ~((m)l’k’q’IT,,l(m)Ikq) 

= 1 ((m)l‘k‘qf1(100)k;. . . (110)kh,) 
k l  ... k ,  
k i  ... k & i  

X D L 1 i T ; ( g O )  (18) 

so that the matrix element Dj?jr,-lkq(go) is given by Wigner coefficients, which must 
be calculated, and matrix elements of the fundamental representations, which were 
obtained in the introduction. From (18) one sees that D i 2 ) q , / k q ( g o )  is a polynomial 
in g o  E SU(3). 

The Wigner coefficients needed in (18) can be calculated by defining a map a t  
from V‘” to Tml“’such that 

, D(110’ 
k A l k m l  ( g o ) ( ( 1 0 0 ) k l .  . * (1lO)km,I(m)lkv), 

with the inverse 

here ( f i )  denotes those representations of SU(3) that appear in T”’“’, f is a 
degeneracy parameter, and 5 a basis label in the space (e). Applying the operator 
@ defined in (7) to both sides of (20) gives 

that is, @ has the property (as shown in equation (7) f f )  of projecting out just the 
highest weight representation ( m ) .  If the basis label E is now chosen to be the SO(3) 
basis labels fkq, the orthonormality properties of eird give 

(22) K ( m )  (1001 ... (1101 
fkr ,  k l  k , ,  = (ek:, @(e;’:” 0 * * @eh:;’)), 

where KZ is a Clebsch-Gordan coefficient (an unnormalised Wigner coefficient)- 
unnormalised because in general @ does not preserve norms. In fact, since @ does 
not preserve norms, to obtain the desired Wigner coefficients, it suffices to replace 
eir; in (22) by (DArlm2e:, compute KZ,  and then normalise the K I  coefficients. 
Thus (22) provides an explicit procedure for computing the Wigner coefficients (21) 
and hence computing matrix elements (18), for the orthogonal polynomials @AFlm2e 
are given by (111, the fundamental representations are given in the introduction, and 
the inner product is the ‘differentiation’ inner product, ( 5 ) .  

As an example of these considerations, we compute some matrix elements of (310) 
in an SO(3) basis. We need Clebsch-Gordan coefficients of the form 
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For example, for I ,  k = 3,0,  the Clebsch-Gordan coefficient becomes 

klk2k3=OO0 10-1 01-1 0-11 -101 1-10 -110 

2 2 2 2 2 2 ~ ( 3 1 0 )  (100) (100) (110) 
3,O k l  kZ k s  4 

(310) 
and this suffices to give 0 3 0 : 0 3 0 $ 0 ( g )  using (18). Note that no 77 label is needed here 
since 1 = 3 has multiplicity one in (310). 

4. Conclusion 

We have shown how to construct orthogonal GL(3, C) polynomials for SU(3) in an 
SO(3) basis, using two different procedures. The first, called the canonical procedure, 
makes use of maps @AY:mz (equation (11)) carrying basis elements e :  of SO(3) into 
the representation space ( m )  = ( m l m 2 0 )  of SU(3). The multiplicity label 77 comes 
from representations of an underlying permutation group S,,, and guarantees that if 
the multiplicity of 1 in ( m )  is greater than one, the polynomials will be orthogonal 
in 7. 

The non-canonical procedure makes use of the fact that the multiplicity of 1 in 
(m00) or ("0) is always one or zero; also the SO(3) Wigner coefficients needed 
for @A(moo) are relatively easy to obtain. Then the polynomials for an arbitrary 
representation ( m )  of SU(3) are obtained with the help of simple Wigner coefficients 
of SO(3). If 1 occurs more than once in (m) ,  the multiplicity is labelled by the angular 
momenta l l  of ( m l - m 2 ,  0,O) and l 2  of (m2, m2, 0), but the resulting polynomials 
(equation (14)) are not orthogonal in the multiplicity variables ( I l ,  1 2 ) .  This procedure 
is called non-canonical because, though the polynomials are linearly independent in 
(II ,  1 2 )  and so via a Gram-Schmidt process can be made orthogonal, there is no unique 
or canonical procedure for carrying out the orthogonalisation process. While this is 
a disadvantage in comparison with the canonical procedure, the non-canonical pro- 
cedure has the advantage that the required SO(3) Wigner coefficients are much easier 
to calculate. In particular, when 1 occurs in ( m )  only once, the two procedures must 
agree, and then it is easier to exhibit the actual GL(3,C) polynomials using the 
non-canonical procedure. 

Once the Wigner coefficients are known, the orthogonal GL(3, C) polynomials 
/I:,"' (see (11)) can be used to compute matrix elements of SU(3) in an SO(3) basis 

(equation (18)) and also other coefficients of interest in nuclear physics. For example, 
if e!pj ( g )  are Gelfand-Cetlin basis elements for the representation (m)-that is, basis 
elements defined with respect to the subgroup chain SU(3) 3 U(2) 3 U(1)-then 
( e / $ ,  eikm,') provide the transformation coefficients between the two types of bases. 
Here ( 0 ,  ) is again the differentiation inner product ( 9 ,  and the Gelfand-Cetlin basis 
realised as polynomials over GL(3, C )  is given in Nagel and Moshinsky (1965) and 
Klink and Ton-That (1982). 

Thus, writing an SU(3) representation in an SO(3) basis involves computing the 
Wigner coefficients for the ml-fold tensor product 1 0. . . 0 1. Problems here include 
finding a simple way in which to obtain these coefficients from a computer. Ideally 
one would like to choose a representation ( m )  of SU(3), calculate the 1 content of 

rl 
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this representation and then compute the desired Wigner coefficients. As discussed 
in the appendix and in Klink (1983), this also probably involves differentiating 
polynomials, and the goal is to find the most efficient way for doing this. 

Also, a closer analysis of the multiplicity label 7 is required. For a given ml-fold 
tensor product of 1 = 1 representations, it does not seem possible to label all the 
representations of SO(3) using representations of the underlying S,, group. This 
aspect of the multiplicity problem is closely related to the notion of plethysm 
(Wybourne 1970). However, not all representations of 1 occurring in the ml-fold 
tensor product are needed; as discussed in § 2, only those representations for which 
S,,-,, x S,, carries the identity representation give a non-zero A:" map. How these 
two aspects of the multiplicity problem mix together needs to be more carefully 
investigated. For example, in the six-fold tensor product 1 0. . . 0 1, there is a 42 
representation of S6  which serves to break the multiplicity of 1 = 1 representations; 
but (420) of SU(3) also contains 1 = 2 twice, so 42 does not uniquely resolve the 
multiplicity. On the other hand, 1 = 2 representations injected into (420) have a 
definite symmetry with respect to S4 representations. It is not clear whether the 
multiplicity can always be resolved using such a 'recursive' definition of symmetry type. 

Appendix. Wigner coefficients for n-fold I = 1 representations 

As shown in D 2, an essential part of the AY*m2 map involves the Wigner coefficients 
for converting m l  1 = 1 representations to a direct sum of representations of S0(3),  
labelled by a multiplicity parameter 7. In this appendix we first wish to see how 77 
can be obtained, and then further, see how the Wigner coefficients can be calculated. 

Finding the multiplicity in an n-fold tensor product of (100) representations of 
SU(3) is straightforward; it is simply necessary to find the dimension of the correspond- 
ing s, representation. For example, in (100) 0 (100) 0 (loo),  the representation (210) 
of SU(3) occurs twice because the dimension of the corresponding 21 representation 
of S3 is 2. But it is also straightforward to compute the multiplicity of 1 in a given 
representation ( m )  of SU(3) (Moshinsky et a1 1975, Judd et a1 1974). Then the 
multiplicity of a given I occurring in the n-fold tensor product of 1 = 1 representations 
is the product of the dimension of the S, representation times the multiplicity of 1 in 
the corresponding SU(3) representation, summed over all SU(3) representations. 
Stated in this way, the multiplicity is not easily expressed in closed form; a closed 
form expression using other methods (Mikhailov 1977, Rashid 1977) is given by 

2n -3k - j - 2  
k n -2  

where j is a representation of SU(2), and P:, is the multiplicity of i occurring in the 
n-fold product 1 0 1 0 .  . . 0 1. However, our interest here is not in finding a general 
expression for the multiplicity, but rather in finding a computational procedure for 
obtaining the Wigner coefficients. By using the fact that 1 = 1 is irreducible in (100) 
of SU(3), we are able to associate with each 1 occurring in the n-fold tensor product 
an irreducible representation of S, which can be used for computing the Wigner 
coefficients. 

The Wigner coefficients needed (in (8)) are ( l k l  . . . lk,llkT). These coefficients are 
required to have special transformation properties under S, ; to see what these transfor- 
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mation properties are, define 
1 1 Tp(e:, 0 . .  .Oe:n)=epck,) 0.. . Oep(k,) ,  

where p E S, ,  and p ( k i )  means the permutation of the ith entry. We also demand, in 
equation (8), that 

where d , . , ( p )  is a matrix element of S,. With these requirements it is clear from (8) 
that ( l k l  . , . l k , l l kv )  will transform in its left entry as the inverse of (A2) and in the 
right entry as (A3). The transformation properties under T, are preserved for A:1mz 
and @A:lm2, so that 

Tp@A~"Zek = d,,,(p)@AT1m2e:, (A41 
r)' 

and from (A4) it follows, using the orthogonality properties of the matrix elements 
of S, , ,  that hi:) (equation (11)) is orthogonal in v. 

We now wish to compute Wigner coefficients with the desired transformation 
properties. In Klink (1983) it was shown how one can obtain Wigner coefficients for 
an n-fold tensor product jl 0. . . Oj,, of SU(2); here we wish to apply this method to 
1 0  1 0 .  . ,0 1. Now each j has corresponding to it a Gelfand label m = 2j ,  so the 
tensor product of interest is actually m l  0. . . 0 m,. A map defined analogously to 
(7) sends elements of a space Tilo, = V"" 0 . . . 0 V"'), r = Zy='=, mi, to the desired 
tensor product space. The multiplicity of a given representation j in jl 0. . . Oj,  is 
closely connected with the dimension of a representation of the permutation group 
S, .  In fact, Klink (1983) shows that the multiplicity of j in jl 0 .  . . Oj, is given by 
the number of times the identity representation of the subgroup S, ,  x . . . x Smn occurs 
in the corresponding representation of S,. In the case of interest in this paper, where 
I = 1 + m = 2, the multiplicity is given by the number of times the identity representa- 
tion of S z  x . . . x S z  occurs in S ,  = SZ,. However, this is the multiplicity independent 
of any further symmetry. Unlike jl 0 .  . . Oj,, where there is in general no permuta- 
tional symmetry of the representations, in the case of 1 0. . . 0 1, all the representations 
are the same, and a permutational symmetry provides at least part of the multiplicity 
label. This means that, unlike the general case where a Gelfand pattern specifies a 
matrix element of S, which can be used to compute Wigner coefficients, we must 
introduce a subgroup scheme in S, that both restricts the representations of Sz x . . . x S z  
in S, to be the identity representation, and also allows for permutation symmetry of 
the n 1 = 1 representations. Such a group is precisely the semidirect product group 
G = (Sz x . . . x Sz) 0 S,, which is a subgroup of S ,  = S2,. The representations of G are 
easily obtained via the Mackey induced representation theory, but whether they 
provide the simplest and computationally most effective way to obtain the projection 
operators needed for the Wigner coefficients still.remains to be seen. The conclusion 
to be drawn here is that the methods of Klink (1983) for computing Wigner coefficients 
can be used to compute those Wigner coefficients of interest in this paper, but whether 
such a method is the simplest one is not known. 

However, when the Wigner coefficients are ( l k l  . . . l k , ( l k )  with ( I )  invariant under 
any interchange of k l  . . . k ,  (so that 77 is the identity (symmetric) representation of 
S,), then the coefficients are much easier to obtain; such Wigner coefficients are needed 
for e!knoo) and eiknflo) (see equation (12)). To begin, the only symmetric representation 

r) 
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of S ,  in the n-told tensor product (100)  0. . . 0 (100)  of SU(3) is (n00);  hence, the 
only symmetric representations 1 of SO(3) in the n-fold tensor product 1 0 ,  . . 0 1 
are given by the SO(3) content of (nOO), which is 1 = n, n - 2, n -4 ,  . . . . Therefore, 
if ( l k l  . . . lk,llk) is invariant under the interchange of k l  . . . k,, only SO(3) representa- 
tions of the form n, n - 2, . . . can occur. 

But the Wigner coefficients ( l k l  . . , lk, lnk)  are easily obtained using SO(3) lower- 
ing operators, starting with 

(A5) In, n )  = 11, 1 ) .  . . 11, 1). 

Applying the lowering operator to both sides of (A5) gives 

~ n , n - l ) = N { ~ l , O ) ~ l ,  1 ) .  . * I l , l ) + .  . .+Il, 1 ) .  . . ~ l , O ) } = N ~ { l l . ,  , lo}), 

where N is a normalisation factor, and (11 . . . 10) stands for the set of variables 
k l ,  kz, . . . , k, such that k l  +IC*+. . . + k, = n - 1.  Lowering again gives 

l n , n - 2 ) = N ' [ J { 1 1 . .  . 1 0 0 } ) + ~ ( l l . ,  , 1-1})], 

and the state In -2 ,  n - 2 )  must be orthogonal to In, n -2) .  This fixes the Wigner 
coefficients to be 

Iki . . . k , )  
k = n - 2  (11 , . . 1oo}'"-"'"-2' { l l  . . . l - l} ' " l  N 

l = t l  2 
l = n - 2  1 

1 
-In -1) 

[4n2 - l l n  + 8]-"2 
[(n -lj(n2-2)]-"2 

where the superscript on { } gives the number of different ways kl  + . . . + k, = n - 2,  
first with n - 2  '1's' and two 'O's', and then n - 1  '1's' and one '-1'. N is the 
normalisation coefficient for the Wigner coefficients. 

Proceeding further, the states In, n - 2) and In - 2, n - 2)  are lowered to In, n - 4) 
and In - 2 ,  n -4), where a new state In -4, n -4) appears. Requiring that this state 
be orthogonal to the previous two then fixes the In -4, n -4) Wigner coefficients. 
This procedure can be continued until all of the Wigner coefficients in the chain 1 = n, 
n -2 ,  n - 4  are computed. 

As an example consider n = 4; the Wigner coefficients for k = 2 and k = 0 are 

( k i k ~ k 3 k 4 )  
k = 2 {1100}'6' { l l l - l } i4 '  N 

1 = 4  2 1 1 / 4 2  

1 = 0 {0000}"' {11 - 1 - 1y61 {loo- 1}"2' M 

1 = 4  4 1 2 i / J Z  
1 = 2  12 -4 -1 1 / J 2 5 2  

1 = 2  1 -3 1Id42 
( k i k 2 k 3 k 4 )  

(A71 

l = O  3 2 -1 1/J45 

where as before (111 - 1}'4) means the four states ~ l ) ~ l ) ~ l ) ~ - l ) .  . . ~ - l ) / l ) ~ l ) ~ l )  etc. 
These coefficients can be used to obtain the polynomials e::") and using (12) .  
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